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Abstract

The use of the Interpolating Matrix Method to investigate the dynamical behaviour of natural convection flow will

form the main focus of the work. We design an original and efficient numerical algorithm that mimic TVD constraints

to rule out spurious overshoots and oscillations that appear near steep gradients, to solve fluid flow and heat transfer

equations, and compare the results to some Benchmark numerical solutions.

� 2003 Elsevier B.V. All rights reserved.

Keywords: IMM; TVD; Flux limiters; Non-orthogonal grid; Heat flow
1. Introduction

For a number of years the natural convection problem has attracted numerical analysts because of the

large practical applications such as crystal growth [13], solar energy collection [1], climatic conditioning
of rooms [19] and many other technical fields as found in computers and nuclear reactors technolo-

gies [2,24]. Many numerical simulations have been associated to the investigation of this problem

[4–6,14,20].

There are several basic approaches to solve partial differential equations on irregular region. Among

these methods, The Interpolating Matrix Method (IMM). The IMM technique was first proposed by

Koshizuka et al. [12] as a new generalized finite differences which requires no special treatment for cur-

vilinear or non-uniform grids. The method is based on the Leith scheme to deal with the convective term in

the Navier–Stokes equations. Unfortunately, the Leith scheme is a two-dimensionally unstable method
arising from the interaction of two one-dimensional methods, each of which is stable. In our previous work
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[18], we showed how to modify the method to get a stable and accurate TVD–IMM scheme. Different tools

have been developed. Most importantly, three main features differentiate the two versions of the IMM.

First, the stream–vorticity formulation is chosen and the IMM is adapted to it contrary to the use of
primitive variables in the original IMM [12]. Furthermore, it is well known that, considering the storage

and also the computational requirements, the stream function and vorticity formulation seems to be

worthwhile. The pressure field can be obtained from the converged solutions. Second, The former technique

contains no cross terms in the definition of the interpolation matrix which makes it less accurate in non-

orthogonal grids. In the new definition of the matrix, a correction term is appended and the mixed de-

rivative is approximated by averaging. Furthermore, the numerical scheme is more stable and efficient to

handle the convective dominated flows which, as it is well known, is not a trivial task to deal with. The

resulting version of the IMM, by its flexibility, not only makes it possible to solve the fluid flow equations in
curvilinear configurations, but it is also easily adaptable to the most recent and gravitational high reso-

lution schemes for conservation law equations. The TVD–IMM is then an approach to obtain difference

equations at arbitrary mesh point and coupled to an efficient TVD scheme which consists on reformulating

the classical Lax–Wendroff scheme in such a way that it takes into account the non-orthogonality of the

mesh, and then updating it to be like TVD form by appending suitable curvilinear terms [9,16–18]. The

flexibility is a major benefit of this approach.

Numerical investigations of buoyancy-induced convection in cavities that have differentially heated walls

are numerous. The thermal flow in enclosed cavities has received a great deal of attention and has emerged
as a dominant test case [4–6,11]. The paper by De Vahl Davis and Jones [4] is the most comprehensive study

of this problem to date. A key contention, which emerged from their 37 solution analysis, reveals two

difficulties: The calculation of heat transfer and the resolution of steep temperature gradients in boundary

layers adjacent to the confining walls. The detailed numerical studies have become a benchmark case for

developers of numerical methods [5,6,8,11,23].

This paper is devoted to:

• Present a numerical technique that is based on IMM coupled with TVD scheme to solve the incompress-

ible Navier–Stokes equations with heat transfer.
• Show that this TVD–IMM algorithm gives a very good results even at high Rayleigh numbers.

• Show that this technique can be used to solve problems, that of buoyancy driven flow, in arbitrary

geometries.

In this work the incompressible Navier–Stokes equations expressed in terms of stream–vorticity

variables with the Boussinesq approximation for the buoyancy effect are considered and a numerical

method is proposed, the present scheme is basically an improved new scheme to that presented in [18]

in terms of flux limiters and computation speed. The nonlinear TVD–IMM solver handles sharp

gradient regions very well, shows little numerical diffusion, produces no ripples, is able, among other
things, to produce the main characteristics of buoyancy driven flow and the resulting method is easy to

implement.

In the following sections, the governing equations are introduced. After a detailed description of the

IMMmethod, we present the numerical scheme where the equations are discretized. The applicability of the

proposed formulation and the accuracy of the numerical scheme are evaluated by solving test cases

available in the literature and by comparing the solutions to the standard benchmarks data.
2. Mathematical model

The governing equations for a two-dimensional incompressible unsteady, laminar natural convection

flow, with density variation only in the body force term, according to the Boussinesq approximation for the

buoyancy effect, can be expressed in primitive variables as
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In an attempt to reduce the large differences in the order of magnitude that may occur between terms in
the field equations, the lengths and velocities are dimensionalized by the characteristic length scale L and by

the ratio of thermal diffusivity k to L, respectively. Dimensionless temperature h is defined as ðT � TrefÞ=
ðTh � TcÞ. Th and Tc are the hot wall and the cold wall temperature, respectively, and the reference tem-

perature is Tref ¼ ðTh � TcÞ=2. The pressure P and the time are dimensionalized by qkm=L2 and L2=k, re-
spectively. The Prandtl number is defined as Pr ¼ m=k, Rayleigh number is defined as Ra ¼ ðgbL3

ðTh � TcÞÞ=mk. Here, g is the acceleration resulting from gravity, b is the thermal expansion coefficient and m
is the kinematic viscosity.

The vorticity x, kinematically defined as

x ¼ r� u; u ¼ ðu; vÞ is the vector velocity; ð5Þ

is introduced in the governing equations to eliminate the pressure as solution variable. Taking the curl of

the momentum equations (2) and (3) eliminates any gradient field. Applying Eq. (1), the vorticity transport

reduces to

Vorticity:
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The stream function w, and hence the velocity u, is then evaluated from the vorticity via the kinematic

equation which leads to the following equations:

Stream function:

�Dw ¼ x; ð7Þ

Velocity:

u ¼ ow
oy

; v ¼ � ow
ox

; ð8Þ

Energy:
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The vorticity equation (6) and the temperature equation (9) should be supplemented with appropriate initial

and boundary conditions. As for the elliptic stream equation (7), a boundary conditions should be added.

There are several advantages of using the stream–vorticity formulation for natural convection system.
The pressure does not explicitly appear and the elliptic pressure equation takes much longer than kinematic

equation (7) to achieve iteration convergence, because of the difference in boundary conditions. Moreover,

the continuity equation is identically satisfied. Finally, the stream–vorticity form can predict time-accurate

heat transfer problems.
3. Discretization method

As a prelude to developing the numerical scheme, it is convenient to describe how any differential op-

erator and any constitutive equation are to be handled. It has to be known that the IMM is a technique to

obtain difference equations by assuming a polynomial combination of any physical quantity / by some

nodal values in the neighborhood of a mesh point P :

/ðxÞ ¼
Xn

k¼0

Cp
kPkðxÞ: ð10Þ

The polynomial shape functions ðPkÞk turn out to be extremely useful and ðCp
k Þk are the related fitted

coefficients.
The differential coefficients of the physical quantity at the mesh point P are obtained by differentiating

Eq. (10)

o/
oxj

¼
Xn

k¼0

Cp
k

oPk
oxj

: ð11Þ

Differential equation (11) can be written in a matrix form as follows:

DðP Þ ¼ MDðP Þ � UðPÞ; ð12Þ

where DðPÞ is a vector of the nþ 1 differential coefficients. Here, the vector UðP Þ consists of the nþ 1 nodal

values of the physical quantity and the matrix MDðP Þ is the interpolating matrix in the physical space.

Accordingly, any differential equation can be transformed to a difference equation by the help of MDðP Þ.
There are two distinct approaches to discretizing a domain: structured and unstructured. In the IMM, a

structured grid can be viewed as a mapping from a natural space to a physical space. This provides a way of

making a convenient transformation between a local, computational space ðn; gÞ (natural coordinates) and
global, physical space ðx; yÞ. Fig. 1 shows the geometry in both physical and natural coordinate space.

We define the approximate polynomial equation (10) in the transformed plane. The interpolating matrix

MDðPÞ in terms of the ni system is obtained as

DnðP Þ ¼ MDn
� UðP Þ: ð13Þ

The interpolating matrix MDn
is assumed to be homogeneous for every mesh point P . With the help of the

transformation matrix Tn!x that is defined as

DðP Þ ¼ Tn!xDnðP Þ; ð14Þ

the following expression for the interpolating matrix MDðPÞ in terms of the x coordinate system is obtained:

MDðP Þ ¼ Tn!x �MDn
; ð15Þ



Fig. 1. Coordinate transformation between physical space and natural space.
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where the matrix Tn!x can be thought of as inducing general curvilinear coordinates in physical space and

involves terms such as xn; xg; xnn; . . .

3.1. Typical interpolation

The biquadratic shape functions are used. Thus, for a quantity / one can write

/ ¼ c0 þ c1nþ c2gþ c3n
2 þ c4g2 þ c5ngþ c6n

2gþ c7ng2 þ c8n
2g2: ð16Þ

Note that at point P , the higher-order mixed derivatives of / are equal to zero, except for the lowest-order

one /ng ¼ c5. The n- and g-derivatives of / are given as follows:
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Here /i ði ¼ 1; . . . ; 8Þ, represents the /-variable values at point P . The derivatives in ðx; yÞ and ðn; gÞ co-
ordinate systems are related as
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Observe that, for the second-order derivatives, the transformation produces a lower-order term in / and the
approximation of the second derivative will involve nine neighboring points. The combination of Eqs. (17)

and (18) gives
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where the matrix
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is called the interpolating matrix. The term I in Eq. (19) represents a central approximation of the first- and

second-order derivatives and the term II is a correction to the second-order derivatives when the coordinate

transformation is non-orthogonal. Moreover, the mixed partial derivative is approximated by averaging

using values at the four center points

/m ¼ ð/5 � /6 þ /8 � /7Þ
4

:

Remark. At each point P , represented by the reference number ij, the interpolating matrix elements are

denoted by coeffði; j; ijÞ, where the indices i; j; ij represent, respectively, the mesh point number neighbor of

the point P (see Fig. 2), the differential coefficient type ð1 ! o=ox, 2 ! o=oy, 3 ! o2=ox2, 4 ! o2=oy2,
5 ! o2=oxy2Þ and the reference of the mesh point P . /ij is the value of / at the mesh point P and

/n ðn ¼ 1; . . . ; 8Þ is the value of / at the neighboring point n.
From Eq. (19), the differential operator o/=ox can be written as follows:

o/
ox

¼ coeffð1; 1; ijÞð/1 � /ðijÞÞ þ coeffð2; 1; ijÞð/2 � /ðijÞÞ

þ coeffð3; 1; ijÞð/3 � /ðijÞÞ þ coeffð4; 1; ijÞð/4 � /ðijÞÞ; ð21Þ

where

coeffð1; 1; ijÞ ¼ � gx
2
; coeffð2; 1; ijÞ ¼ � nx

2
; coeffð3; 1; ijÞ ¼ nx

2
; coeffð4; 1; ijÞ ¼ gx

2
:

Fig. 2. Mesh point number ð1; . . . ; 8Þ neighbor of the point P represented by the reference number ij.
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The differential operators

o/
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;
o2/
ox2

;
o2/
oy2

;
o2/
oxy2

� �

can be calculated from (19) in the same manner.
4. Numerical scheme

We shall first review the Sweby analysis to the Lax–Wendroff scheme and his modification via the flux

TVD limiters [7,10,21,22,25]. Then, we describe Davis� interpretation to the Sweby TVD method, as a Lax–

Wendoroff scheme plus an upwind weighted artificial dissipation term. Finally, we derive the TVD–IMM

approximation to the solution of the natural convection problem.

4.1. Review of the TVD limiting

Since the Lax–Wendroff scheme, for the scalar linear conservation law

ox
ot

þ a
ox
ox

¼ 0 ð22Þ

is not TVD, Sweby chooses a particular modification by adding a limiter to the second-order term
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The slope ratio and the CFL number are defined by
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Dx
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where rþ is to be used if the waves are right-moving, otherwise r� is used. The functionW is a flux limiter, to

be specified. More specifically, the sufficient condition to be TVD is given by

06
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r

6 2; 06WðrÞ6 2: ð25Þ

Many particular flux limiter functions are well investigated in the literature. The most usual include

Superbee : WðrÞ ¼ maxð0;minð1; 2rÞ;minðr; 2ÞÞ;
Van Leer : WðrÞ ¼ r þ jrj
1þ jrj ;
Minmod : WðrÞ ¼ maxð0;minðr; 1ÞÞ:

Davis showed that a TVD scheme can be constructed by adding an artificial viscosity-like term to a

standard finite difference scheme [3]. If we put the scheme into the form
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this reduces to Sweby�s scheme, where the upstream weighted artificial dissipation terms are as follows:

Kþ
jþ1

2

¼
m
2
ð1� mÞð1�Wðrþj ÞÞ if a > 0;
0 if a6 0;

�
ð27Þ
K�
jþ1

2
¼ 0 if aP 0;

m
2
ð1þ mÞðWðr�jþ1Þ � 1Þ if a < 0:

�
ð28Þ
4.2. TVD–IMM algorithm

As indicated in Section 1, we begin by designing the time stepping scheme which is a further development

of that already discussed in a previous work [18]. The methodology developed here is based on a geo-
metrical version of the nonlinear Lax–Wendroff scheme and the operator splitting procedure. In the fol-

lowing, we outline the main principles upon which the algorithm is built.

4.2.1. Vorticity approximation

Prediction step. The differential coefficients in the Cartesian space are estimated at each mesh

point. The differential equation is then directly transformed to a difference equation. The one-step

Lax–Wendroff scheme for the two-dimensional vorticity-convection equation is written in the IMM

form as

�xxn
ij ¼ xn

ij � DtdxðuxÞn � DtdyðvxÞn þ
Dt2

2
u dxxðuxÞn
�

þ dxyðvxÞn
�
þ Dt2

2
v dyyðvxÞn
�

þ dyxðuxÞn
�
; ð29Þ

where the IMM�s difference operators are defined by

dx/ ¼ coeffð1; 1; ijÞð/ðneighð1; ijÞÞ � /ðijÞÞ þ coeffð2; 1; ijÞð/ðneighð2; ijÞÞ � /ðijÞÞ
þ coeffð3; 1; ijÞð/ðneighð3; ijÞÞ � /ðijÞÞ þ coeffð4; 1; ijÞð/ðneighð4; ijÞÞ � /ðijÞÞ; ð30Þ
dxx/ ¼ coeffð1; 3; ijÞð/ðneighð1; ijÞÞ � /ðijÞÞ þ coeffð2; 3; ijÞð/ðneighð2; ijÞÞ � /ðijÞÞ
þ coeffð3; 3; ijÞð/ðneighð3; ijÞÞ � /ðijÞÞ þ coeffð4; 3; ijÞð/ðneighð4; ijÞÞ � /ðijÞÞ
þ GxðijÞ/m; ð31Þ
dxy/ ¼ coeffð1; 5; ijÞð/ðneighð1; ijÞÞ � /ðijÞÞ þ coeffð2; 5; ijÞð/ðneighð2; ijÞÞ � /ðijÞÞ
þ coeffð3; 5; ijÞð/ðneighð3; ijÞÞ � /ðijÞÞ þ coeffð4; 5; ijÞð/ðneighð4; ijÞÞ � /ðijÞÞ
þ GxyðijÞ/m: ð32Þ

The symbol coeffð:; :; ijÞ represents the differential coefficient in the interpolating matrix at mesh point ij.
Similarly, operators dy and dyy can be determined by (30) and (31) but in the second column of coeffð�; �; ijÞ
the numbers 1 and 3 are replaced by 2 and 4, respectively. The symbol Neighðn; ijÞ is the reference

of point Pn neighbour of mesh point ij. The weights GxðijÞ ¼ 2nxgx and GxyðijÞ ¼ nxgy þ nygx as defined in
Eq. (19).

TVD correction. As the proposed scheme produces spurious wiggles in solutions with steep gradients,

according to the class of the governing equations (coupling of the chaining type between the temperature

and the vorticity) and regarding to the explicit nature of the scheme that will lead to a component
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by component use of an upstream artificial viscosity. The scheme (29) can be updated to TVD form by

appending to the right-hand side of Eq. (29) suitable curvilinear terms (for more details see [18]):
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The resulting TVD-correction vorticity value is then given by
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where

Kþðrxþi;jÞ ¼
ðcp1þ cp2Þð1�Wðrxþi;jÞÞ if unij > 0;
0 if unij < 0;

�
ð35Þ

with

cp1 ¼ Dtunijðcoeffð3; 1; ijÞ � 0:5Dtunijcoeffð3; 3; ijÞÞ;
cp2 ¼ Dtvnijðcoeffð3; 2; ijÞ � 0:5Dtvnijcoeffð3; 4; ijÞÞ
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and
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It is to be noticed that the artificial viscosity terms K� depend upon the interpolating matrix coefficients.

The input to the limiter is the ratio of the consecutive gradients
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Correction step. Upon solution of convective stage, the new vorticity field is obtained from Eq. (34) by

appending the diffusion term, thus the vorticity value at the time step nþ 1 is given by
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Dxn

iþ1
2
;j � Kþðrxþi�1;jÞ

h
þ K�ðrx�i;jÞ

i
Dxn

i�1
2
;j

þ Kþðryþi;jÞ
h

þ K�ðry�i;jþ1Þ
i
Dxn

i;jþ1
2
� Kþðryþi;j�1Þ
h

þ K�ðry�i;jÞ
i
Dxn

i;j�1
2

þ Dt Pr d xn
�

þ d xn
�
þ RaPrd h: ð41Þ
xx yy x
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4.2.2. Energy approximation

The time energy discretization is established in a similar way:

Prediction step.

�hhnij ¼ hnij � DtdxðuhÞn � DtdyðvhÞn þ
Dt2

2
u dxxðuhÞn
�

þ dxyðvhÞn
�
þ Dt2

2
v dyyðvhÞn
�

þ dyxðuhÞn
�
: ð42Þ

Correction step.

hnþ1
ij ¼ �hhnij þ Kþðrxþi;jÞ

h
þ K�ðrx�iþ1;jÞ

i
Dhniþ1

2
;j � Kþðrxþi�1;jÞ

h
þ K�ðrx�i;jÞ

i
Dhni�1

2
;j

þ Kþðryþi;jÞ
h

þ K�ðry�i;jþ1Þ
i
Dhni;jþ1

2
� Kþðryþi;j�1Þ
h

þ K�ðry�i;jÞ
i
Dhni;j�1

2
þ Dtdxxh

n: ð43Þ
4.2.3. Stream function approximation

For stream equation, an IMM discretization is adopted such that generalized differences are used to

approximate the original partial differential equation. The resolution is based on the successive over-

relaxation, widely used for this kind of elliptic equation. The velocity components unþ1
ij and vnþ1

ij can be

computed from the stream function w as

unþ1
ij ¼ dyw

nþ1; vnþ1
ij ¼ �dxw

nþ1: ð44Þ

5. Results and discussion

In order to demonstrate the validity of the TVD–IMM scheme and to check its accuracy, we have

computed different solutions of the buoyancy driven cavity flow. The flow is steady inside an upright

(b ¼ 90�) and inclined (b ¼ 45�) square cavity with insulated top and bottom walls and with side walls

maintained at constant but different temperatures (see Fig. 3). This classical problem has become a stan-

dard benchmark for assessing the performance of algorithms to solve the heat transfer equations [4–6,8,23].
Fig. 3. Geometry and boundary conditions for the buoyancy-driven cavity problem.



Fig. 5. Contour map of temperature T for Pr ¼ 0:71 and Rayleigh numbers Ra ¼ 105, Ra ¼ 106.

Fig. 6. Contour map of stream function w for Pr ¼ 0:71 and Rayleigh numbers Ra ¼ 103, Ra ¼ 104.

Fig. 4. Contour map of temperature T for Pr ¼ 0:71 and Rayleigh numbers Ra ¼ 103, Ra ¼ 104.
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5.1. Buoyancy-driven cavity

Square cavity case. As a preliminary test to investigate the behaviour of the flow structure of air
(Pr ¼ 0:71), we have computed the different solutions of the above described problem for four values of the

Rayleigh number Ra ¼ 103, 104, 105 and 106. The most accurate benchmark solutions of this case were

produced by De Vahl Davis and Jones [4,5]. Gresho et al. [8] and Winters [23].

Evolution of flow structure. For Rayleigh number 103 and 104, the flow shows a single clockwise cell in the

enclosure (see Fig. 6). At Rayleigh number 105, a secondary recirculation eddies starts to form and a

significant horizontal temperature gradient is increased near the cold and hot walls (see Fig. 7(a)). As the

Rayleigh number continue to rise, the wall boundary layers become thinner and more pronounced (see

Figs. 7 and 10(b)). The structure of the flow near the corners of the cavity is emphasized (see Fig. 8(b)).
Fig. 7. Contour map of stream function w for Pr ¼ 0:71 and Rayleigh numbers Ra ¼ 105, Ra ¼ 106.

Fig. 8. Horizontal velocity for different values of Rayleigh number and U-velocity contour for Ra ¼ 106.
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Validation of the numerical method. Stream lines, vorticity lines and isotherms predicted by TVD–IMM

on the ð120� 120Þ uniformly spaced grid and using Suberbee flux limiter are presented in Figs. 4–7, 9 and

10. Horizontal velocities on the vertical plane at x ¼ 0:5 and vertical velocities on the horizontal plane at
y ¼ 0:5 are plotted in Figs. 8 and 11(a). The results of the present simulations accurately reproduced the

distinctive characteristics of the flow field known from previous studies.

Data from the TVD–IMM experiment are compiled in Tables 1–4. We note by wmid the stream function

at the mid point of the cavity; umax the maximum horizontal velocity on the vertical plain at x ¼ 0:5, to-
gether with its location; vmax the maximum vertical velocity on the horizontal plain at y ¼ 0:5, together with
its location. Tables 1–3 compare wmid; umax; vmax from the present study with other numerical results. From

these tables, it can be seen that the present result agrees particularly well with the result from [4,5,8,23].

Inclined cavity. This test has been motivated by some industrial applications. It has been proved that the
heat transfer, in heat exchangers, is enhanced when the tube is optimally inclined [15]. The purpose of this

test is to show the ability of IMM to predict the natural-convection flow in non-orthogonal grids. The

following test is proposed by Demirdzic et al. [6] as benchmark reference for Ra ¼ 106 with Pr ¼ 0:71 and

Ra ¼ 106 with Pr ¼ 0:1.
Fig. 9. Contour map of vorticity x for Pr ¼ 0:71 and Rayleigh numbers Ra ¼ 103, Ra ¼ 104.

Fig. 10. Contour map of vorticity x for Pr ¼ 0:71 and Rayleigh numbers Ra ¼ 105, Ra ¼ 106.



Fig. 11. Vertical velocity for different values of Rayleigh number and V-velocity contour for Ra ¼ 106.

Table 1

Minimum and maximum stream function values in vortex centres and their position for Rayleigh number Ra ¼ 103

De Vahl�s results Gresho�s results Winters� results TVD–IMM�s results

Ra ¼ 103 and b ¼ 90�
jwmidj 1.174 – – 1.180

umax 3.634 3.656 3.64 3.663

y 0.813 0.812 0.81 0.815

vmax 3.679 3.704 3.69 3.716

x 0.179 0.166 0.1 0.176

Table 2

Minimum and maximum stream function values in vortex centres and their position for Rayleigh number Ra ¼ 104

De Vahl�s results Gresho�s results Winters’ results TVD–IMM�s results

Ra ¼ 104 and b ¼ 90�
jwmidj 5.098 – – 5.0824

umax 16.182 16.193 16.2 16.2184

y 0.823 0.822 0.82 0.824

vmax 19.509 19.675 19.7 19.686

x 0.120 0.120 0.1187 0.118

Table 3

Minimum and maximum stream function values in vortex centres and their position for Rayleigh number Ra ¼ 105

De Vahl�s results Gresho�s results Winters’ results TVD–IMM�s results

Ra ¼ 105 and b ¼ 90�
jwmidj 9.142 – – 9.344

umax 34.81 34.62 34.8 35.03

y 0.855 0.856 0.86 0.857

vmax 68.22 68.896 68.6 68.651

x 0.066 0.0663 0.066 0.0671

jwmaxj 9.644 9.6206 9.307 9.644
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Table 4

Minimum and maximum stream function values in vortex centres and their position for Rayleigh number Ra ¼ 106

De Vahl�s results Gresho�s results Winters’ results TVD–IMM�s results

Ra ¼ 106 and b ¼ 90�
jwmidj 16.53 – – 16.88

umax 65.33 64.593 63.9 65.64

y 0.851 0.888 0.85 0.849

vmax 216.75 220.64 222. 219.145

x 0.0387 0.0337 0.039 0.035

jwmaxj 16.961 16.707 16.71 16.972
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Evolution of flow structure. Contrary to the case of horizontal cavities, where a stagnant region develops

in the center of the layer as a consequence of a vanishing buoyancy force at the core, in inclined cavities, a

buoyant production of vorticity exists in the core of the cavity owing to the presence of cross-stream
Fig. 12. Contour map of stream function for Pr ¼ 0:1, Ra ¼ 106 and Pr ¼ 0:71, Ra ¼ 106 with b ¼ 45�.

Fig. 13. Contour maps of temperature for Pr ¼ 0:1, Ra ¼ 106 and Pr ¼ 0:71, Ra ¼ 106 with b ¼ 45�.



Fig. 14. Contour map of vorticity for Pr ¼ 0:1, Ra ¼ 106 and Pr ¼ 0:71, Ra ¼ 106 with b ¼ 45�.

Table 5

Maximum stream function value and position as predicted for Rayleigh number Ra ¼ 106

Demirdzics� results TVD–IMM�s results

Ra ¼ 106 and b ¼ 45�
jwmaxj 7.705E) 08 9.1809197E) 07

ymax 0.7026 0.6950

xmax 1.271738 1.275000
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temperature difference and the y component of gravity. The thermo convective movement produces an

isotherm line deviation (see Fig. 13). As shown in Figs. 12 and 14, two flow regions may be distinguished:

the core region, containing a parallel clockwise flow and the end regions near the closing walls, where the

parallel flow turns around. Qualitatively, the results obtained by the TVD–IMM approach are in good

agreement with Demirdzic�s solutions [6].
Validation of the numerical method. In this study, some of flow quantities obtained by Demirdzic et al. [6]

are used to validate our numerical calculations. In particular, the maximum stream function value wmax is
compared in Table 5 for Rayleigh number 106 and Prandtl number 0.1. It should be noted that due to the

different ways of non-dimensionalization between Demirdzic et al. [6] and the authors, the equivalent wmax

in Table 5 is the one from Demirdzic multiplied by 10�3. It can be seen that the present results generally

agree well with those of Demirdzic et al. [6].
6. Concluding remarks

In this paper we have presented a numerical algorithm for the resolution of Navier–Stokes equations

of a Boussinesq fluid enclosed in two-dimensional upright and inclined square cavity. An original high-

resolution second-order accurate scheme was proposed. The method has been applied to study the standard

heat transfer problems. Numerical predictions are compared with those of previous benchmark data of the

overall cavity flow. In summary, the benchmarks prove that the numerical method proposed is robust and

accurate even in the limiting cases of high Rayleigh numbers.
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